Перевод: с английского на английский

с английского на английский

Chemical technology

  • 1 Chemical technology

    Biographical history of technology > Chemical technology

  • 2 Messel, Rudolf

    SUBJECT AREA: Chemical technology
    [br]
    b. 14 January 1848 Darmstadt, Germany
    d. 18 April 1920 London, England
    [br]
    German industrial chemist.
    [br]
    Messel served three years as an apprentice to the chemical manufacturers E.Lucius of Frankfurt before studying chemistry at Zürich, Heidelberg and Tübingen. In 1870 he travelled to England to assist the distinguished chemist Sir Henry Roscoe, but was soon recalled to Germany on the outbreak of the Franco-Prussian War. After hostilities ceased, Messel returned to London to join the firm of manufacturers of sulphuric acid Dunn, Squire \& Company of Stratford, London. The firm amalgamated with Spencer Chapman, and after Messel became its Managing Director in 1878 it was known as Spencer, Chapman \& Messel Ltd.
    Messel's principal contribution to chemical technology was the invention of the contact process for the manufacture of sulphuric acid. Earlier processes for making this essential product, now needed in ever-increasing quantities by the new processes for making dyestuffs, fertilizers and explosives, were based on the oxidation of sulphur dioxide by oxides of nitrogen, developed by Joshua Ward and John Roebuck. Attempts to oxidize the dioxide to the trioxide with the oxygen in the air in the presence of a suitable catalyst had so far failed because the catalyst had become "poisoned" and ineffective; Messel avoided this by using highly purified gases. The contact process produced a concentrated form of sulphuric acid called oleum. Until the outbreak of the First World War, Messel's firm was the principal manufacturer, but then the demand rose sharply, so that other firms had to engage in its manufacture. Production thereby increased from 20,000 to 450,000 tons per year.
    [br]
    Principal Honours and Distinctions
    FRS 1912. President, Society of Chemical Industry 1911–12, 1914.
    Further Reading
    1931, Special jubilee issue, Journal of the Society of the Chemical Industry (July). G.T.Morgan and D.D.Pratt, 1938, The British Chemical Industry, London.
    LRD

    Biographical history of technology > Messel, Rudolf

  • 3 Cross, Charles Frederick

    [br]
    b. 11 December 1855 Brentwood, Middlesex, England
    d. 15 April 1935 Hove, England
    [br]
    English chemist who contributed to the development of viscose rayon from cellulose.
    [br]
    Cross was educated at the universities of London, Zurich and Manchester. It was at Owens College, Manchester, that Cross first met E.J. Bevan and where these two first worked together on the nature of cellulose. After gaining some industrial experience, Cross joined Bevan to set up a partnership in London as analytical and consulting chemists, specializing in the chemistry and technology of cellulose and lignin. They were at the Jodrell laboratory, Kew Gardens, for a time and then set up their own laboratory at Station Avenue, Kew Gardens. In 1888, the first edition of their joint publication A Textbook of Paper-making, appeared. It went into several editions and became the standard reference and textbook on the subject. The long introductory chapter is a discourse on cellulose.
    In 1892, Cross, Bevan and Clayton Beadle took out their historic patent on the solution and regeneration of cellulose. The modern artificial-fibre industry stems from this patent. They made their discovery at New Court, Carey Street, London: wood-pulp (or another cheap form of cellulose) was dissolved in a mixture of carbon disulphide and aqueous alkali to produce sodium xanthate. After maturing, it was squirted through fine holes into dilute acid, which set the liquid to give spinnable fibres of "viscose". However, it was many years before the process became a commercial operation, partly because the use of a natural raw material such as wood involved variations in chemical content and each batch might react differently. At first it was thought that viscose might be suitable for incandescent lamp filaments, and C.H.Stearn, a collaborator with Cross, continued to investigate this possibility, but the sheen on the fibres suggested that viscose might be made into artificial silk. The original Viscose Spinning Syndicate was formed in 1894 and a place was rented at Erith in Kent. However, it was not until some skeins of artificial silk (a term to which Cross himself objected) were displayed in Paris that textile manufacturers began to take an interest in it. It was then that Courtaulds decided to investigate this new fibre, although it was not until 1904 that they bought the English patents and developed the first artificial silk that was later called "rayon". Cross was also concerned with the development of viscose films and of cellulose acetate, which became a rival to rayon in the form of "Celanese". He retained his interest in the paper industry and in publishing, in 1895 again collaborating with Bevan and publishing a book on Cellulose and other technical articles. He was a cultured man and a good musician. He was elected a Fellow of the Royal Society in 1917.
    [br]
    Principal Honours and Distinctions
    FRS 1917.
    Bibliography
    1888, with E.J.Bevan, A Text-book of Papermaking. 1892, British patent no. 8,700 (cellulose).
    Further Reading
    Obituary Notices of the Royal Society, 1935, London. Obituary, 1935, Journal of the Chemical Society 1,337. Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    Edwin J.Beer, 1962–3, "The birth of viscose rayon", Transactions of the Newcomen Society 35 (an account of the problems of developing viscose rayon; Beer worked under Cross in the Kew laboratories).
    C.Singer (ed.), 1978, A History of Technology, Vol. VI, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Cross, Charles Frederick

  • 4 Ward, Joshua

    SUBJECT AREA: Chemical technology
    [br]
    b. 1685
    d. 21 November 1761 London, England
    [br]
    English doctor and industrial chemist.
    [br]
    Ward is perhaps better described as a "quack" than a medical doctor. His remedies, one containing a dangerous quantity of antimony, were dubious to say the least. A fraudulent attempt to enter Parliament in 1717 forced him to leave the country quickly. After his pardon in 1733, he returned to London and established a successful practice. His medical prowess is immortalized in Hogarth's picture The Harlot's Progress.
    Sulphuric acid had been an important chemical for centuries and Ward found that he needed large quantities of it to make his remedies. He set up works to manufacture it at Twickenham, near London, in 1736 and then at Richmond three years later. His process consisted of burning a mixture of saltpetre (nitre; potassium nitrate) and sulphur in the neck of a large glass globe containing a little water. Dilute sulphuric acid was thereby formed, which was concentrated by distillation. Although the method was not new, having been described in the seventeenth century by the German chemist Johann Glauber, Ward was granted a patent for his process in 1749. An important feature was the size of the globes, which had no less than fifty gallons' capacity, which must have entailed considerable skill on the part of the glassblowers. Through the adoption of Ward's process, the price of this essential commodity fell from £2 per pound to only 2 shillings. It provided the best method of manufacture until the advent of the lead-chamber process invented by John Roebuck.
    [br]
    Further Reading
    A.Clow and N.Clow, 1952, The Chemical Revolution: A Contribution to Social Technology, London: Batch worth.
    C.Singer et al. (eds), 1958, A History of Technology, 7 vols, Oxford: Clarendon Press, Vol. IV.
    LRD

    Biographical history of technology > Ward, Joshua

  • 5 Davy, Sir Humphry

    [br]
    b. 17 December 1778 Penzance, Cornwall, England
    d. 29 May 1829 Geneva, Switzerland
    [br]
    English chemist, discoverer of the alkali and alkaline earth metals and the halogens, inventor of the miner's safety lamp.
    [br]
    Educated at the Latin School at Penzance and from 1792 at Truro Grammar School, Davy was apprenticed to a surgeon in Penzance. In 1797 he began to teach himself chemistry by reading, among other works, Lavoisier's elementary treatise on chemistry. In 1798 Dr Thomas Beddoes of Bristol engaged him as assistant in setting up his Pneumatic Institution to pioneer the medical application of the newly discovered gases, especially oxygen.
    In 1799 he discovered the anaesthetic properties of nitrous oxide, discovered not long before by the chemist Joseph Priestley. He also noted its intoxicating qualities, on account of which it was dubbed "laughing-gas". Two years later Count Rumford, founder of the Royal Institution in 1800, appointed Davy Assistant Lecturer, and the following year Professor. His lecturing ability soon began to attract large audiences, making science both popular and fashionable.
    Davy was stimulated by Volta's invention of the voltaic pile, or electric battery, to construct one for himself in 1800. That enabled him to embark on the researches into electrochemistry by which is chiefly known. In 1807 he tried decomposing caustic soda and caustic potash, hitherto regarded as elements, by electrolysis and obtained the metals sodium and potassium. He went on to discover the metals barium, strontium, calcium and magnesium by the same means. Next, he turned his attention to chlorine, which was then regarded as an oxide in accordance with Lavoisier's theory that oxygen was the essential component of acids; Davy failed to decompose it, however, even with the aid of electricity and concluded that it was an element, thus disproving Lavoisier's view of the nature of acids. In 1812 Davy published his Elements of Chemical Philosophy, in which he presented his chemical ideas without, however, committing himself to the atomic theory, recently advanced by John Dalton.
    In 1813 Davy engaged Faraday as Assistant, perhaps his greatest service to science. In April 1815 Davy was asked to assist in the development of a miner's lamp which could be safely used in a firedamp (methane) laden atmosphere. The "Davy lamp", which emerged in January 1816, had its flame completely surrounded by a fine wire mesh; George Stephenson's lamp, based on a similar principle, had been introduced into the Northumberland pits several months earlier, and a bitter controversy as to priority of invention ensued, but it was Davy who was awarded the prize for inventing a successful safety lamp.
    In 1824 Davy was the first to suggest the possibility of conferring cathodic protection to the copper bottoms of naval vessels by the use of sacrificial electrodes. Zinc and iron were found to be equally effective in inhibiting corrosion, although the scheme was later abandoned when it was found that ships protected in this way were rapidly fouled by weeds and barnacles.
    [br]
    Principal Honours and Distinctions
    Knighted 1812. FRS 1803; President, Royal Society 1820. Royal Society Copley Medal 1805.
    Bibliography
    1812, Elements of Chemical Philosophy.
    1839–40, The Collected Works of Sir Humphry Davy, 9 vols, ed. John Davy, London.
    Further Reading
    J.Davy, 1836, Memoirs of the Life of Sir Humphry Davy, London (a classic biography). J.A.Paris, 1831, The Life of Sir Humphry Davy, London (a classic biography). H.Hartley, 1967, Humphry Davy, London (a more recent biography).
    J.Z.Fullmer, 1969, Cambridge, Mass, (a bibliography of Davy's works).
    ASD

    Biographical history of technology > Davy, Sir Humphry

  • 6 Perkin, Sir William Henry

    [br]
    b. 12 March 1838 London, England
    d. 14 July 1907 Sudbury, England
    [br]
    English chemist, discoverer of aniline dyes, the first synthetic dyestuffs.
    [br]
    He early showed an aptitude for chemistry and in 1853 entered the Royal College of Chemistry as a student under A.W.von Hofmann, the first Professor at the College. By the end of his first year, he had carried out his first piece of chemical research, on the action of cyanogen chloride on phenylamine, which he published in the Journal of the Chemical Society (1857). He became honorary assistant to von Hofmann in 1857; three years previously he had set up his own chemical laboratory at home, where he had discovered the first of the azo dyes, aminoazonapththalene. In 1856 Perkin began work on the synthesis of quinine by oxidizing a salt of allyl toluidine with potassium dichromate. Substituting aniline, he obtained a dark-coloured precipitate which proved to possess dyeing properties: Perkin had discovered the first aniline dye. Upon receiving favourable reports on the new material from manufacturers of dyestuffs, especially Pullars of Perth, Perkin resigned from the College and turned to the commercial exploitation of his discovery. This proved highly successful. From 1858, the dye was manufactured at his Greenford Green works as "Aniline Purple" or "Tyrian Purple". It was later to be referred to by the French as mauve. Perkin's discovery led to the development of the modern dyestuffs industry, supplanting dyes from the traditional vegetable sources. In 1869, he introduced two new methods for making the red dye alizarin, in place of the process that involved the use of the madder plant (Rubia tinctorum). In spite of German competition, he dominated the British market until the end of 1873. After eighteen years in chemical industry, Perkin retired and devoted himself entirely to the pure chemical research which he had been pursuing since the 1850s. He eventually contributed ninety papers to the Chemical Society and further papers to other bodies, including the Royal Society. For example, in 1867 he published his synthesis of unsaturated organic acids, known as "Perkin's synthesis". Other papers followed, on the structure of "Aniline Purple". In 1881 Perkin drew attention to the magnetic-rotatory power of some of the substances he had been dealing with. From then on, he devoted particular attention to the application of this phenomenon to the determination of chemical structure.
    Perkin won wide recognition for his discoveries and other contributions to chemistry.
    The half-centenary of his great discovery was celebrated in July 1906 and later that year he received a knighthood.
    [br]
    Principal Honours and Distinctions
    Knighted 1906. FRS 1866. President, Chemical Society 1883–5. President, Society of Chemical Industry 1884–5. Royal Society Royal Medal 1879; Davy Medal 1889.
    Bibliography
    26 August 1856, British patent no. 1984 (Aniline Purple).
    1867, "The action of acetic anhydride upon the hydrides of salicyl, etc.", Journal of the Chemical Society 20:586 (the first description of Perkin's synthesis).
    Further Reading
    S.M.Edelstein, 1961, biography in Great Chemists, ed. E.Farber, New York: Interscience, pp. 757–72 (a reliable, short account).
    R.Meldola, 1908, Journal of the Chemical Society 93:2,214–57 (the most detailed account).
    LRD

    Biographical history of technology > Perkin, Sir William Henry

  • 7 Liebig, Justus von

    [br]
    b. 12 May 1803 Darmstadt, Germany
    d. 18 April 1873 Munich, Germany
    [br]
    German chemist, pioneer in the training of chemists and in agricultural chemistry.
    [br]
    As the son of a pharmacist, Lei big early acquired an interest in chemistry. In 1822 he pursued his chemical studies in Paris under Joseph Louis Gay-Lussac (1778–1850), one of the leading chemists of the time. Three years later he became Professor of Chemistry in the small university of Giessen, near Frankfurt, where he remained for over thirty years. It was there that he established his celebrated laboratory for training in practical chemistry. The laboratory itself and the instruction given by Liebig were a model for the training of chemists throughout Europe and a steady stream of well-qualified chemists issued forth from Giessen. It was the supply of well-trained chemists that proved to be the basis for Germany's later success in industrial chemistry. The university now bears Liebig's name, and the laboratory has been preserved as a museum in the same state that it was in after the extensions of 1839. Liebig's many and important researches into chemical theory and organic chemistry lie outside the scope of this Dictionary. From 1840 he turned to the chemistry of living things. In agriculture, he stressed the importance of fertilizers containing potassium and phosphorus, although he underrated the role of nitrogen. Liebig thereby exerted a powerful influence on the movement to provide agriculture with a scientific basis.
    [br]
    Further Reading
    C.Paoloni, 1968, Justus von Liebig: eine Bibliographie sämtlicher Veröffentlichungen, Heidelberg: Carl Winter (includes a complete list of Liebig's papers and books, published collections of his letters and a list of secondary works about him).
    A.W.Hofmann, 1876, The Life Work of Liebig (Faraday Lecture), London (a valuable reference).
    J.R.Partington, 1964, A History of Chemistry, Vol. 4, London (a well-documented account of his work).
    F.R.Moulton, 1942, Liebig and After Liebig: A Century of Progress in Agricultural Chemistry, Washington, DC: American Association for the Advancement of Science, publication 18 (for Liebig's work in agricultural chemistry).
    J.B.Morrell, 1972, "The chemist breeders", Ambix 19:1–47 (for information about Liebig's laboratory).
    LRD

    Biographical history of technology > Liebig, Justus von

  • 8 Bergius, Friedrich Carl Rudolf

    [br]
    b. 11 October 1884 Goldschmieden, near Breslau, Germany
    d. 31 March Buenos Aires, Argentina
    [br]
    [br]
    After studying chemistry in Breslau and Leipzig and assisting inter alia at the institute of Fritz Haber in Karlsruhe on the catalysis of ammonia under high pressure, in 1909 he went to Hannover to pursue his idea of turning coal into liquid hydrocarbon under high hydrogen pressure (200 atm) and high temperatures (470° C). As experiments with high pressure in chemical processes were still in their initial stages and the Technical University could not support him sufficiently, he set up a private laboratory to develop the methods and to construct the equipment himself. Four years later, in 1913, his process for producing liquid or organic compounds from coal was patented.
    The economic aspects of this process were apparent as the demand for fuels and lubricants increased more rapidly than the production of oil, and Bergius's process became even more important after the outbreak of the First World War. The Th. Goldschmidt company of Essen contracted him and tried large-scale production near Mannheim in 1914, but production failed because of the lack of capital and experience to operate with high pressure on an industrial level. Both capital and experience were provided jointly by the BASF company, which produced ammonia at Merseburg, and IG Farben, which took over the Bergius process in 1925, the same year that the synthesis of hydrocarbon had been developed by Fischer-Tropsch. Two years later, at the Leuna works, almost 100,000 tonnes of oil were produced from coal; during the following years, several more hydrogenation plants were to follow, especially in the eastern parts of Germany as well as in the Ruhr area, while the government guaranteed the costs. The Bergius process was extremely important for the supply of fuels to Germany during the Second World War, with the monthly production rate in 1943–4 being more than 700,000 tonnes. However, the plants were mostly destroyed at. the end of the war and were later dismantled.
    As a consequence of this success Bergius, who had gained an international reputation, went abroad to work as a consultant to several foreign governments. Experiments aiming to reduce the costs of production are still continued in some countries. By 1925, after he had solved all the principles of his process, he had turned to the production of dextrose by hydrolyzing wood with highly concentrated hydrochloric acid.
    [br]
    Principal Honours and Distinctions
    Nobel Prize 1931. Honorary doctorates, Heidelberg, Harvard and Hannover.
    Bibliography
    1907, "Über absolute Schwefelsäure als Lösungsmittel", unpublished thesis, Weida. 1913, Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung
    des Entstehungsprozesses der Steinkohle, Halle. 1913, DRP no. 301, 231 (coal-liquefaction process).
    1925, "Verflüssigung der Kohle", Zeitschrift des Vereins Deutscher Ingenieure, 69:1313–20, 1359–62.
    1933, "Chemische Reaktionen unter hohem Druck", Les Prix Nobel en 1931, Stockholm, pp. 1–37.
    Further Reading
    Deutsches Bergbau-Museum, 1985, Friedrich Bergius und die Kohleverflüssigung. Stationen einer Entwicklung, Bochum (gives a comprehensive and illustrated description of the man and the technology).
    H.Beck, 1982, Friedrich Bergius, ein Erfinderschicksal, Munich: Deutsches Museum (a detailed biographical description).
    W.Birkendfeld, 1964, Der synthetische Treibstoff 1933–1945. Ein Beitragzur nationalsozialistischen Wirtschafts-und Rüstungspolitik, Göttingen, Berlin and Frankfurt (describes the economic value of synthetic fuels for the Third Reich).
    WK

    Biographical history of technology > Bergius, Friedrich Carl Rudolf

  • 9 Pasteur, Louis

    [br]
    b. 27 December 1822 Dole, France
    d. 28 September 1895 Paris, France
    [br]
    French chemist, founder of stereochemistry, developer of microbiology and immunology, and exponent of the germ theory of disease.
    [br]
    Sustained by the family tanning business in Dole, near the Swiss border, Pasteur's school career was undistinguished, sufficing to gain him entry into the teacher-training college in Paris, the Ecole Normale, There the chemical lectures by the great organic chemist J.B.A.Dumas (1800–84) fired Pasteur's enthusiasm for chemistry which never left him. Pasteur's first research, carried out at the Ecole, was into tartaric acid and resulted in the discovery of its two optically active forms resulting from dissymmetrical forms of their molecules. This led to the development of stereochemistry. Next, an interest in alcoholic fermentation, first as Professor of Chemistry at Lille University in 1854 and then back at the Ecole from 1857, led him to deny the possibility of spontaneous generation of animal life. Doubt had previously been cast on this, but it was Pasteur's classic research that finally established that the putrefaction of broth or the fermentation of sugar could not occur spontaneously in sterile conditions, and could only be caused by airborne micro-organisms. As a result, he introduced pasteurization or brief, moderate heating to kill pathogens in milk, wine and other foods. The suppuration of wounds was regarded as a similar process, leading Lister to apply Pasteur's principles to revolutionize surgery. In 1860, Pasteur himself decided to turn to medical research. His first study again had important industrial implications, for the silk industry was badly affected by diseases of the silkworm. After prolonged and careful investigation, Pasteur found ways of dealing with the two main infections. In 1868, however, he had a stroke, which prevented him from active carrying out experimentation and restricted him to directing research, which actually was more congenial to him. Success with disease in larger animals came slowly. In 1879 he observed that a chicken treated with a weakened culture of chicken-cholera bacillus would not develop symptoms of the disease when treated with an active culture. He compared this result with Jenner's vaccination against smallpox and decided to search for a vaccine against the cattle disease anthrax. In May 1881 he staged a demonstration which clearly showed the success of his new vaccine. Pasteur's next success, finding a vaccine which could protect against and treat rabies, made him world famous, especially after a person was cured in 1885. In recognition of his work, the Pasteur Institute was set up in Paris by public subscription and opened in 1888. Pasteur's genius transcended the boundaries between science, medicine and technology, and his achievements have had significant consequences for all three fields.
    [br]
    Bibliography
    Pasteur published over 500 books, monographs and scientific papers, reproduced in the magnificent Oeuvres de Pasteur, 1922–39, ed. Pasteur Vallery-Radot, 7 vols, Paris.
    Further Reading
    P.Vallery-Radot, 1900, La vie de Louis Pasteur, Paris: Hachette; 1958, Louis Pasteur. A Great Life in Brief, English trans., New York (the standard biography).
    E.Duclaux, 1896, Pasteur: Histoire d ' un esprit, Paris; 1920, English trans., Philadelphia (perceptive on the development of Pasteur's thought in relation to contemporary science).
    R.Dobos, 1950, Louis Pasteur, Free Lance of Science, Boston, Mass.; 1955, French trans.
    LRD

    Biographical history of technology > Pasteur, Louis

  • 10 Bell, Sir Isaac Lowthian

    [br]
    b. 15 February 1816 Newcastle upon Tyne, England
    d. 20 December 1904 Rounton Grange, Northallerton, Yorkshire, England
    [br]
    English ironworks proprietor, chemical manufacturer and railway director, widely renowned for his scientific pronouncements.
    [br]
    Following an extensive education, in 1835 Bell entered the Tyneside chemical and iron business where his father was a partner; for about five years from 1845 he controlled the ironworks. In 1844, he and his two brothers leased an iron blast-furnace at Wylam on Tyne. In 1850, with partners, he started chemical works at Washington, near Gateshead. A few years later, with his two brothers, he set up the Clarence Ironworks on Teesside. In the 1880s, salt extraction and soda-making were added there; at that time the Bell Brothers' enterprises, including collieries, employed 6,000 people.
    Lowthian Bell was a pioneer in applying thermochemistry to blast-furnace working. Besides his commercial interests, scientific experimentation and international travel, he found time to take a leading part in the promotion of British technical organizations; upon his death he left evidence of a prodigious level of personal activity.
    [br]
    Principal Honours and Distinctions
    Created baronet 1885. FRS 1875. Légion d'honneur 1878. MP, Hartlepool, 1875–80. President: British Iron Trade Association; Iron and Steel Institute; Institution of Mechanical Engineers; North of England Institute of Mining and Mechanical Engineers; Institution of Mining Engineers; Society of the Chemical Industry. Iron and Steel Institute Bessemer Gold Medal 1874 (the first recipient). Society of Arts Albert Medal 1895.
    Bibliography
    The first of several books, Bell's Chemical Phenomena of Iron Smelting… (1872), was soon translated into German, French and Swedish. He was the author of more than forty technical articles.
    Further Reading
    1900–1910, Dictionary of National Biography.
    C.Wilson, 1984, article in Dictionary of Business Biography, Vol. I, ed. J.Jeremy, Butterworth (a more discursive account).
    D.Burn, 1940, The Economic History of Steelmaking, 1867–1939: A Study in Competition, Cambridge (2nd edn 1961).
    JKA

    Biographical history of technology > Bell, Sir Isaac Lowthian

  • 11 Mond, Ludwig

    SUBJECT AREA: Chemical technology
    [br]
    b. 7 March 1839 Cassel, Germany
    d. 11 December 1909 London, England
    [br]
    German (naturalized English) industrial chemist.
    [br]
    Born into a prosperous Jewish merchant family, Mond studied at the Polytechnic in Cassel and then under the distinguished chemists Hermann Kolbe at Marburg and Bunsen at Heidelberg from 1856. In 1859 he began work as an industrial chemist in various works in Germany and Holland. At this time, Mond was pursuing his method for recovering sulphur from the alkali wastes in the Leblanc soda-making process. Mond came to England in 1862 and five years later settled permanently, in partnership with John Hutchinson \& Co. at Widnes, to perfect his process, although complete success eluded him. He became a naturalized British subject in 1880.
    In 1872 Mond became acquainted with Ernest Solvay, the Belgian chemist who developed the ammonia-soda process which finally supplanted the Leblanc process. Mond negotiated the English patent rights and set up the first ammoniasoda plant in England at Winnington in Cheshire, in partnership with John Brunner. After overcoming many difficulties by incessant hard work, the process became a financial success and in 1881 Brunner, Mond \& Co. was formed, for a time the largest alkali works in the world. In 1926 the company merged with others to form Imperial Chemical Industries Ltd (ICI). The firm was one of the first to adopt the eight-hour day and to provide model dwellings and playing fields for its employees.
    From 1879 Mond took up the production of ammonia and this led to the Mond producer-gas plant, patented in 1883. The process consisted of passing air and steam over coal and coke at a carefully regulated temperature. Ammonia was generated and, at the same time, so was a cheap and useful producer gas. Mond's major discovery followed the observation in 1889 that carbon monoxide could combine with nickel in its ore at around 60°C to form a gaseous compound, nickel carbonyl. This, on heating to a higher temperature, would then decompose to give pure nickel. Mond followed up this unusual way of producing and purifying a metal and by 1892 had succeeded in setting up a pilot plant to perfect a large-scale process and went on to form the Mond Nickel Company.
    Apart from being a successful industrialist, Mond was prominent in scientific circles and played a leading role in the setting up of the Society of Chemical Industry in 1881. The success of his operations earned him great wealth, much of which he donated for learned and charitable purposes. He formed a notable collection of pictures which he bequeathed to the National Gallery.
    [br]
    Principal Honours and Distinctions
    FRS 1891.
    Bibliography
    1885, "On the origin of the ammonia-soda process", Journal of the Society of Chemical Industry 4:527–9.
    1895. "The history of the process of nickel extraction", Journal of the Society of Chemical Industry 14:945–6.
    Further Reading
    J.M.Cohen, 1956, The Life of Ludwig Mond, London: Methuen. Obituary, 1918, Journal of the Chemical Society 113:318–34.
    F.C.Donnan, 1939, Ludwig Mond 1839–1909, London (a valuable lecture).
    LRD

    Biographical history of technology > Mond, Ludwig

  • 12 Bunsen, Robert Wilhelm

    SUBJECT AREA: Chemical technology
    [br]
    b. 31 March 1811 Göttingen, Germany
    d. 16 August 1899 Heidelberg, Germany
    [br]
    German chemist, pioneer of chemical spectroscopy.
    [br]
    Bunsen's father was Librarian and Professor of Linguistics at Göttingen University and Bunsen himself studied chemistry there. Obtaining his doctorate at the age of only 19, he travelled widely, meeting some of the leading chemists of the day and visiting many engineering works. On his return he held various academic posts, finally as Professor of Chemistry at Heidelberg in 1852, a post he held until his retirement in 1889.
    During 1837–41 Bunsen studied a series of compounds shown to contain the cacodyl (CH3)2As-group or radical. The elucidation of the structure of these compounds gave support to the radical theory in organic chemistry and earned him fame, but it also cost him the sight of an eye and other ill effects resulting from these dangerous and evil-smelling substances. With the chemist Gustav Robert Kirchhoff (1824–87), Bunsen pioneered the use of spectroscopy in chemical analysis from 1859, and with its aid he discovered the elements caesium and rubidium. He developed the Bunsen cell, a zinc-carbon primary cell, with which he isolated a number of alkali and other metals by electrodeposition from solution or electrolysis of fused chlorides.
    Bunsen's main work was in chemical analysis, in the course of which he devised some important laboratory equipment, such as a filter pump. The celebrated Bunsen gas burner was probably devised by his technician Peter Desdega. During 1838–44 Bunsen applied his methods of gas analysis to the study of the gases produced by blast furnaces for the production of cast iron. He demonstrated that no less than 80 per cent of the heat was lost during smelting, and that valuable gaseous by-products, such as ammonia, were also lost. Lyon Playfair in England was working along similar lines, and in 1848 the two men issued a paper, "On the gases evolved from iron furnaces", to draw attention to these drawbacks.
    [br]
    Bibliography
    1904, Bunsen's collected papers were published in 3 vols, Leipzig.
    Further Reading
    G.Lockemann, 1949, Robert Wilhelm Bunsen: Lebensbild eines deutschen Forschers, Stuttgart.
    T.Curtin, 1961, biog. account, in E.Farber (ed.), Great Chemists, New York, pp. 575–81. Henry E.Roscoe, 1900, "Bunsen memorial lecture, 29th March 1900", Journal of the
    Chemical Society 77:511–54.
    LRD

    Biographical history of technology > Bunsen, Robert Wilhelm

  • 13 Gibson, R.O.

    [br]
    fl. 1920s–30s
    [br]
    English chemist who, with E.O.Fawcett, discovered polythene.
    [br]
    Dr Gibson's work towards the discovery of polythene had its origin in a visit in 1925 to Dr A. Michels of Amsterdam University; the latter had made major advances in techniques for studying chemical reactions at very high pressures. After working with Michels for a time, in 1926 Gibson joined Brunner Mond, one of the companies that went on to form the chemical giant Imperial Chemical Industries (ICI). The company supported research into fundamental chemical research that had no immediate commercial application, including the field being cultivated by Michels and Gibson. In 1933 Gibson was joined by another ICI chemist, E.O.Fawcett, who had worked with W.H. Carothers in the USA on polymer chemistry. They were asked to study the effects of high pressure on various reaction systems, including a mixture of benzaldehyde and ethylene. Gibson's notebook for 27 March that year records that after a loss of pressure during which the benzaldehyde was blown out of the reaction tube, a waxy solid was observed in the tube. This is generally recognized as the first recorded observation of polythene. By the following June they had shown that the white, waxy solid was a fairly high molecular weight polymer of ethylene formed at a temperature of 443°K and a pressure of 2,000 bar. However, only small amounts of the material were produced and its significance was not immediately recognized. It was not until two years later that W.P.Perrin and others, also ICI chemists, restarted work on the polymer. They showed that it could be moulded, drawn into threads and cast into tough films. It was a good electrical insulator and almost inert chemically. A British patent for producing polythene was taken out in 1936, and after further development work a production plant began operating in September 1939, just as the Second World War was breaking out. Polythene had arrived in time to make a major contribution to the war effort, for it had the insulating properties required for newly developing work on radar. When peacetime uses became possible, polythene production surged ahead and became the major industry it is today, with a myriad uses in industry and in everyday life.
    [br]
    Bibliography
    1964, The Discovery of Polythene, Royal Institute of Chemistry Lecture Series 1, London.
    LRD

    Biographical history of technology > Gibson, R.O.

  • 14 Haber, Fritz

    SUBJECT AREA: Chemical technology
    [br]
    b. 9 December 1868 Breslau, Germany (now Wroclaw, Poland)
    d. 29 January 1934 Basel, Switzerland
    [br]
    German chemist, inventor of the process for the synthesis of ammonia.
    [br]
    Haber's father was a manufacturer of dyestuffs, so he studied organic chemistry at Berlin and Heidelberg universities to equip him to enter his father's firm. But his interest turned to physical chemistry and remained there throughout his life. He became Assistant at the Technische Hochschule in Karlsruhe in 1894; his first work there was on pyrolysis and electrochemistry, and he published his Grundrisse der technischen Electrochemie in 1898. Haber became famous for thorough and illuminating theoretical studies in areas of growing practical importance. He rose through the academic ranks and was appointed a full professor in 1906. In 1912 he was also appointed Director of the Institute of Physical Chemistry and Electrochemistry at Dahlem, outside Berlin.
    Early in the twentieth century Haber invented a process for the synthesis of ammonia. The English chemist and physicist Sir William Crookes (1832–1919) had warned of the danger of mass hunger because the deposits of Chilean nitrate were becoming exhausted and nitrogenous fertilizers would not suffice for the world's growing population. A solution lay in the use of the nitrogen in the air, and the efforts of chemists centred on ways of converting it to usable nitrate. Haber was aware of contemporary work on the fixation of nitrogen by the cyanamide and arc processes, but in 1904 he turned to the study of ammonia formation from its elements, nitrogen and hydrogen. During 1907–9 Haber found that the yield of ammonia reached an industrially viable level if the reaction took place under a pressure of 150–200 atmospheres and a temperature of 600°C (1,112° F) in the presence of a suitable catalyst—first osmium, later uranium. He devised an apparatus in which a mixture of the gases was pumped through a converter, in which the ammonia formed was withdrawn while the unchanged gases were recirculated. By 1913, Haber's collaborator, Carl Bosch had succeeded in raising this laboratory process to the industrial scale. It was the first successful high-pressure industrial chemical process, and solved the nitrogen problem. The outbreak of the First World War directed the work of the institute in Dahlem to military purposes, and Haber was placed in charge of chemical warfare. In this capacity, he developed poisonous gases as well as the means of defence against them, such as gas masks. The synthetic-ammonia process was diverted to produce nitric acid for explosives. The great benefits and achievement of the Haber-Bosch process were recognized by the award in 1919 of the Nobel Prize in Chemistry, but on account of Haber's association with chemical warfare, British, French and American scientists denounced the award; this only added to the sense of bitterness he already felt at his country's defeat in the war. He concentrated on the theoretical studies for which he was renowned, in particular on pyrolysis and autoxidation, and both the Karlsruhe and the Dahlem laboratories became international centres for discussion and research in physical chemistry.
    With the Nazi takeover in 1933, Haber found that, as a Jew, he was relegated to second-class status. He did not see why he should appoint staff on account of their grandmothers instead of their ability, so he resigned his posts and went into exile. For some months he accepted hospitality in Cambridge, but he was on his way to a new post in what is now Israel when he died suddenly in Basel, Switzerland.
    [br]
    Bibliography
    1898, Grundrisse der technischen Electrochemie.
    1927, Aus Leben und Beruf.
    Further Reading
    J.E.Coates, 1939, "The Haber Memorial Lecture", Journal of the Chemical Society: 1,642–72.
    M.Goran, 1967, The Story of Fritz Haber, Norman, OK: University of Oklahoma Press (includes a complete list of Haber's works).
    LRD

    Biographical history of technology > Haber, Fritz

  • 15 Lavoisier, Antoine Laurent

    SUBJECT AREA: Chemical technology
    [br]
    b. 26 August 1743 Paris, France
    d. 8 May 1794 Paris, France
    [br]
    French founder of the modern science of chemistry.
    [br]
    As well as receiving a formal education in law and literature, Lavoisier studied science under some of the leading figures of the day. This proved to be an ideal formation of the man in whom "man of science" and "public servant" were so intimately combined. His early work towards the first geological map of France and on the water supply of Paris helped to win him election to the Royal Academy of Sciences in 1768 at the youthful age of 25. In the same year he used some of his private income to buy a part-share in the "tax farm", a private company which leased from the Government the right to collect certain indirect taxes.
    In 1772 Lavoisier began his researches into the related phenomena of combustion, respiration and the calcination or oxidation of metals. This culminated in the early 1780s in the overthrow of the prevailing theory, based on an imponderable combustion principle called "phlogiston", and the substitution of the modern explanation of these processes. At the same time, understanding of the nature of acids, bases and salts was placed on a sounder footing. More important, Lavoisier defined a chemical element in its modern sense and showed how it should be applied by drawing up the first modern list of the chemical elements. With the revolution in chemistry initiated by Lavoisier, chemists could begin to understand correctly the fundamental processes of their science. This understanding was the foundationo of the astonishing advance in scientific and industrial chemistry that has taken place since then. As an academician, Lavoisier was paid by the Government to carry out investigations into a wide variety of practical questions with a chemical bias, such as the manufacture of starch and the distillation of phosphorus. In 1775 Louis XVI ordered the setting up of the Gunpowder Commission to improve the supply and quality of gunpowder, deficiencies in which had hampered France's war efforts. Lavoisier was a member of the Commission and, as usual, took the leading part, drawing up its report and supervising its implementation. As a result, the industry became profitable, output increased so that France could even export powder, and the range of the powder increased by two-thirds. This was a material factor in France's war effort in the Revolution and the Napoleonic wars.
    As if his chemical researches and official duties were not enough, Lavoisier began to apply his scientific principles to agriculture when he purchased an estate at Frechines, near Blois. After ten years' work on his experimental farm there, Lavoisier was able to describe his results in the memoir "Results of some agricultural experiments and reflections on their relation to political economy" (Paris, 1788), which holds historic importance in agriculture and economics. In spite of his services to the nation and to humanity, his association with the tax farm was to have tragic consequences: during the reign of terror in 1794 the Revolutionaries consigned to the guillotine all the tax farmers, including Lavoisier.
    [br]
    Bibliography
    1862–93, Oeuvres de Lavoisier, Vols I–IV, ed. J.B.A.Dumas; Vols V–VI, ed. E.Grimaux, Paris (Lavoisier's collected works).
    Further Reading
    D.I.Duveen and H.S.Klickstein, 1954, A Bibliography of the Works of Antoine Laurent Lavoisier 1743–1794, London: William Dawson (contains valuable biographical material).
    D.McKie, 1952, Antoine Lavoisier, Scientist, Economist, Social Reformer, London: Constable (the best modern, general biography).
    H.Guerlac, 1975, Antoine Laurent Lavoisier, Chemist and Revolutionary, New York: Charles Scribner's Sons (a more recent work).
    LRD

    Biographical history of technology > Lavoisier, Antoine Laurent

  • 16 Bosch, Carl

    SUBJECT AREA: Chemical technology
    [br]
    b. 27 August 1874 Cologne, Germany
    d. 26 April 1940 Heidelberg, Germany
    [br]
    German industrial chemist who developed the industrial synthesis of ammonia.
    [br]
    Bosch spent a year as a metalworker before studying chemistry at Leipzig University, obtaining his doctorate in 1898. The following year, he entered Badische Soda-, Anilin Fabrik (BASF), the leading German manufacturer of dyestuflfs. Between 1902 and 1907 he spent much time investigating processes for nitrogen fixation. In 1908 Fritz Haber told BASF of his laboratory-scale synthesis of ammonia from its constituent elements, and in the following year Bosch was assigned to developing it to the industrial scale. Leading a large team of chemists and engineers, Bosch designed the massive pressure converter and other features of the process and was the first to use the water gas shift reaction to produce the large quantities of hydrogen that were required. By 1913 Bosch had completed the largest chemical engineering plant at BASF's works at Oppau, and soon it was producing 36,000 tons of ammonium sulphate a year. Bosch enlarged the Oppau plant and went on to construct a larger plant at Leuna.
    In 1914 Bosch was appointed a Director of BASF. At the end of the First World War he became Technical Adviser to the German delegation at the peace conference. During the 1920s BASF returned to its position of pre-eminence in high-pressure technology, thanks largely to Bosch's leadership. Although increasingly absorbed in administrative matters, Bosch was able to support the synthesis of methane and the hydrogenation of coal tar and lignite to make petrol. In 1925 BASF merged with other companies to form the giant IG Farbenindustrie AG, of which Bosch became Chairman of the Managing Board. His achievements received international recognition in 1931 when he was awarded, with F. Bergius, the Nobel Prize in Chemistry for high-pressure synthesis.
    [br]
    Bibliography
    1932, Über die Entwicklung der chemischen Hochdruckindustrie bei der Aufbau der neuen Ammoniakindustrie.
    Further Reading
    K.Holdermann, 1953, Carl Bosch, Leben und Werk.
    LRD

    Biographical history of technology > Bosch, Carl

  • 17 Deacon, Henry

    [br]
    b. 30 July 1822 London, England
    d. 23 July 1876 Widnes, Cheshire, England
    [br]
    English industrial chemist.
    [br]
    Deacon was apprenticed at the age of 14 to the London engineering firm of Galloway \& Sons. Faraday was a friend of the family and gave Deacon tuition, allowing him to use the laboratories at the Royal Institution. When the firm failed in 1839, Deacon transferred his indentures to Nasmyth \& Gaskell on the Bridgewater Canal at Patricroft. Nasmyth was then beginning work on his steam hammer and it is said that Deacon made the first model of it, for patent purposes. Around 1848, Deacon joined Pilkington's, the glassmakers at St Helens, where he learned the alkali industry, which was then growing up in that district on account of the close proximity of the necessary raw materials, coal, lime and salt. Wishing to start out on his own, he worked as Manager at the chemical works of a John Hutchinson. This was followed by a partnership with William Pilkington, a former employer, who was later replaced by Holbrook Gaskell, another former employer. Deacon's main activity was the manufacture of soda by the Leblanc process. He sought improvement by substituting the ammonia-soda process, but this failed and did not succeed until it was perfected by Solvay. Deacon did, however, with his Chief Chemist F.Hurter, introduce improvements in the Leblanc process during the period 1866–70. Hydrochloric acid, which had previously been a waste product and a nuisance, was oxidized catalytically to chlorine; this could be converted with lime to bleaching powder, which was in heavy demand by the textile industry. The process was patented in 1870.
    [br]
    Further Reading
    D.W.F.Hardie, 1950, A History of the Chemical Industry in Widnes, London. J.Fenwick Allen, 1907, Some Founders of the Chemical Industry, London.
    LRD

    Biographical history of technology > Deacon, Henry

  • 18 Gossage, William

    SUBJECT AREA: Chemical technology
    [br]
    b. 1799 Burgh-in-the-Marsh, Lincolnshire, England
    d. 9 April 1877 Bowdon, Cheshire, England
    [br]
    English industrial chemist, inventor of the absorption tower.
    [br]
    At the age of 12 he was working for his father, who was a chemist and druggist. When he was old enough, he started in the same trade on his own account at Leamington, but soon turned to the making of salt and alkali at a works in Stoke Prior, Worcestershire. In 1850 he moved to Widnes, Lancashire, and established a plant for the manufacture of alkali and soap. Gossage's soap became famous, and some 200,000 tons of it were sold during the period 1862 to 1887. Gossage made important improvements to the Leblanc process. Hitherto, the large quantities of hydrogen chloride discharged into the atmosphere had been a considerable nuisance and a cause of much litigation from aggrieved parties. Gossage introduced the absorption tower, in which the ascending hydrogen chloride was absorbed by a descending stream of water. An outcome of this improvement was the Alkali Act of 1863, which required manufacturers to absorb up to 95 per cent of the offending gas. Gossage later took out many other industrial chemical patents, and for a time he was engaged in copper smelting with works in both Widnes and Neath, South Wales.
    [br]
    Further Reading
    J.Fenwick Allen, 1907, Some Founders of the Chemical Industry, London. D.W.F.Hardie, 1950, A History of the Chemical Industry in Widnes, London.
    LRD

    Biographical history of technology > Gossage, William

  • 19 Mansfield, Charles Blachford

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 May 1819 Rowner, Hampshire, England
    d. 26 February 1855 London, England
    [br]
    English chemist, founder of coal-tar chemistry.
    [br]
    Mansfield, the son of a country clergyman, was educated privately at first, then at Winchester College and at Cambridge; ill health, which dogged his early years, delayed his graduation until 1846. He was first inclined to medicine, but after settling in London, chemistry seemed to him to offer the true basis of the grand scheme of knowledge he aimed to establish. After completing the chemistry course at the Royal College of Chemistry in London, he followed the suggestion of its first director, A.W.von Hofmann, of investigating the chemistry of coal tar. This work led to a result of great importance for industry by demonstrating the valuable substances that could be extracted from coal tar. Mansfield obtained pure benzene, and toluene by a process for which he was granted a patent in 1848 and published in the Chemical Society's journal the same year The following year he published a pamphlet on the applications of benzene.
    Blessed with a private income, Mansfield had no need to support himself by following a regular profession. He was therefore able to spread his brilliant talents in several directions instead of confining them to a single interest. During the period of unrest in 1848, he engaged in social work with a particular concern to improve sanitation. In 1850, a description of a balloon machine in Paris led him to study aeronautics for a while, which bore fruit in an influential book, Aerial Navigation (London, 1851). He then visited Paraguay, making a characteristically thorough and illuminating study of conditions there. Upon his return to London in 1853, Mansfield resumed his chemical studies, especially on salts. He published his results in 1855 as Theory of Salts, his most important contribution to chemical theory.
    Mansfield was in the process of preparing specimens of benzene for the Paris Exhibition of 1855 when a naphtha still overflowed and caught fire. In carrying it to a place of safety, Mansfield sustained injuries which unfortunately proved fatal.
    [br]
    Bibliography
    1851, Aerial Navigation, London. 1855, Theory of Salts, London.
    Further Reading
    E.R.Ward, 1969, "Charles Blachford Mansfield, 1819–1855, coal tar chemist and social reformer", Chemistry and Industry 66:1,530–7 (offers a good and well-documented account of his life and achievements).
    LRD

    Biographical history of technology > Mansfield, Charles Blachford

  • 20 Maxwell, James Clerk

    [br]
    b. 13 June 1831 Edinburgh, Scotland
    d. 5 November 1879 Cambridge, England
    [br]
    Scottish physicist who formulated the unified theory of electromagnetism, the kinetic theory of gases and a theory of colour.
    [br]
    Maxwell attended school at the Edinburgh Academy and at the age of 16 went on to study at Edinburgh University. In 1850 he entered Trinity College, Cambridge, where he graduated four years later as Second Wrangler with the award of the Smith's Prize. Two years later he was appointed Professor at Marischal College, Aberdeen, where he married the Principal's daughter. In 1860 he moved to King's College London, but on the death of his father five years later, Maxwell returned to the family home in Scotland, where he continued his researches as far as the life of a gentleman farmer allowed. This rural existence was interrupted in 1874 when he was persuaded to accept the chair of Cavendish Professor of Experimental Physics at Cambridge. Unfortunately, in 1879 he contracted the cancer that brought his brilliant career to an untimely end. While at Cambridge, Maxwell founded the Cavendish Laboratory for research in physics. A succession of distinguished physicists headed the laboratory, making it one of the world's great centres for notable discoveries in physics.
    During the mid-1850s, Maxwell worked towards a theory to explain electrical and magnetic phenomena in mathematical terms, culminating in 1864 with the formulation of the fundamental equations of electromagnetism (Maxwell's equations). These equations also described the propagation of light, for he had shown that light consists of transverse electromagnetic waves in a hypothetical medium, the "ether". This great synthesis of theories uniting a wide range of phenomena is worthy to set beside those of Sir Isaac Newton and Einstein. Like all such syntheses, it led on to further discoveries. Maxwell himself had suggested that light represented only a small part of the spectrum of electromagnetic waves, and in 1888 Hertz confirmed the discovery of another small part of the spectrum, radio waves, with momentous implications for the development of telecommunication technology. Maxwell contributed to the kinetic theory of gases, which by then were viewed as consisting of a mass of randomly moving molecules colliding with each other and with the walls of the containing vessel. From 1869 Maxwell applied statistical methods to describe the molecular motion in mathematical terms. This led to a greater understanding of the behaviour of gases, with important consequences for the chemical industry.
    Of more direct technological application was Maxwell's work on colour vision, begun in 1849, showing that all colours could be derived from the three primary colours, red, yellow and blue. This enabled him in 1861 to produce the first colour photograph, of a tartan. Maxwell's discoveries about colour vision were quickly taken up and led to the development of colour printing and photography.
    [br]
    Bibliography
    Most of his technical papers are reprinted in The Scientific Papers of J.Clerk Maxwell, 1890, ed. W.D.Niven, Cambridge, 2 vols; reprinted 1952, New York.
    Maxwell published several books, including Theory of Heat, 1870, London (1894, 11th edn, with notes by Lord Rayleigh) and Theory of Electricity and Magnetism, 1873, Oxford (1891, ed. J.J.Thomson, 3rd edn).
    Further Reading
    L.Campbell and W.Garnett, 1882, The Life of James Clerk Maxwell, London (the standard biography).
    J.J.Thomson (ed.), 1931, James Clerk Maxwell 1831–1931, Cambridge. J.G.Crowther, 1932, British Scientists of the Nineteenth Century, London.
    LRD

    Biographical history of technology > Maxwell, James Clerk

См. также в других словарях:

  • chemical technology — cheminė technologija statusas T sritis chemija apibrėžtis Mokslas, tiriantis pramoninius cheminius procesus, kuriems vykstant iš žaliavų gaunami produktai. atitikmenys: angl. chemical technology rus. химическая технология …   Chemijos terminų aiškinamasis žodynas

  • chemical technology technician — cheminės inžinerijos technikas statusas T sritis profesijos apibrėžtis Technikas, kuris, dažniausiai chemijos inžinieriaus vadovaujamas ir prižiūrimas, atlieka techninio pobūdžio užduotis, susijusias su medžiagų cheminio ar fizikinio perdirbimo… …   Inžinieriai, technikai ir technologai. Trikalbis aiškinamasis žodynėlis

  • chemical technology technician — cheminės inžinerijos technikas statusas T sritis profesijos apibrėžtis Technikas, kuris, dažniausiai chemijos inžinieriaus vadovaujamas ir prižiūrimas, atlieka techninio pobūdžio užduotis, susijusias su medžiagų cheminių arba fizikinių savybių… …   Inžinieriai, technikai ir technologai. Trikalbis aiškinamasis žodynėlis

  • chemical technology — science of the chemical processing of substances …   English contemporary dictionary

  • Electrothermal-chemical technology — Electrothermal chemical (ETC) technology is an attempt to increase accuracy and muzzle energy of future tank, artillery, and close in weapon system [cite book | first=Dr Norman|last=Friedman| coauthors=David K Brown, Eric Grove, Stuart Slade,… …   Wikipedia

  • Institute of Chemical Technology — Motto Nurturing Brains, Developing Minds towards a developed India Established October 1 …   Wikipedia

  • Mumbai University Institute of Chemical Technology — Infobox University name = Mumbai University Institute of Chemical Technology established = August 4, 1936 type = Public director = Professor J. B. Joshi city = Mumbai state = Maharashtra country = INDIA motto = Nurturing Brains Developing Minds… …   Wikipedia

  • Beijing University of Chemical Technology — Infobox University name = Beijing University of Chemical Technology motto = 宏德博学 化育天工 Integrity, Knowledge, Sharing Works established = 1958 type = Public endowment = president = Wang Zihao undergrad = 11,200 postgrad = 3700 staff = 1,000 city =… …   Wikipedia

  • Institute of Chemical Technology in Prague — (ICT, Vysoká škola chemicko technologická VŠCHT in Czech) is the largest university specializing in chemistry in the Czech Republic. It was founded in 1952 and since that time it has been one of the leading research spots in central Europe. More… …   Wikipedia

  • Indian Institute of Chemical Technology — (IICT) is a premier national level research laboratory under the Council of Scientific and Industrial Research (CSIR). IICT conducts research in basic and applied chemistry and biochemistry. It is located in Hyderabad, India.Mandate* To carry out …   Wikipedia

  • Shenyang Institute of Chemical Technology — (沈阳化工学院) is a university in Shenyang, Liaoning, China under the provincial government.It teaches chemical and computer engineering to both national and foreign students. The university is affiliated with the Canadian Counsel for Professionals… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»